

ECOM+2 - logic and components

Prof. Per AGRELL

Prof. Peter BOGETOFT

First ECOM+2 Workshop Bruxelles, November 27, 2004

Outline

Charter perspective

- Focus of the ECOM+ model

Logic

- From partial to aggregate evaluations

Data

- The necessary TSO inputs

Results

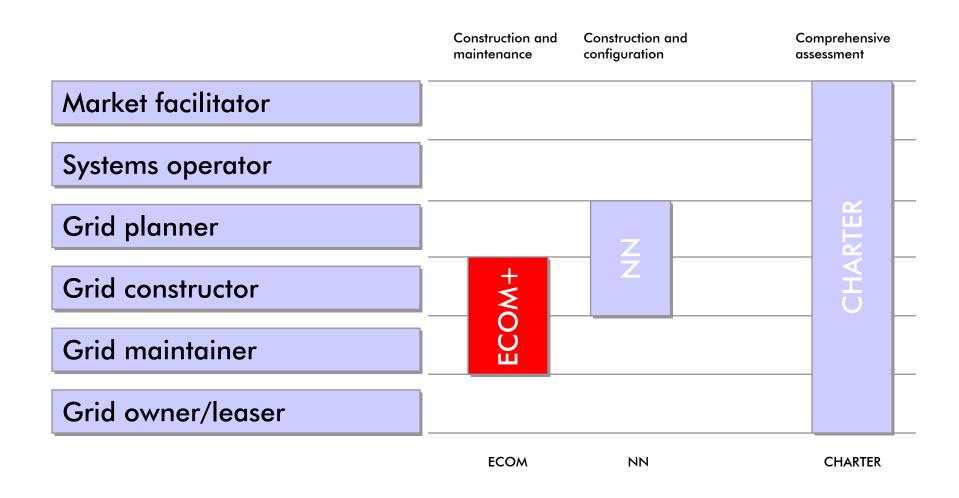
Examples

Extensions

- Improvements and uses

Conclusions

Charter perspective



Budget and Impact

Share of TSO budget	Social welfare impact
Grid planner	
Facilitator	
Systems operator	
Grid constructor	
Grid maintainer	
Grid owner/leaser	

TSO benchmarking

Functions and Synergies

Grid Construction

Physical construction of grid and installation of network assets.

Grid Operations and maintenance

 Preventive and reactive service of assets, staffing of facilities, replacement of degraded or faulty assets etc

Synergies

- Substitution between construction and maintenance is accounted for.
- Other synergies ignored –e.g. between planning and construction.

Effectiveness - Efficiency

Effectiveness

Doing the right things

Efficiency

Doing things right

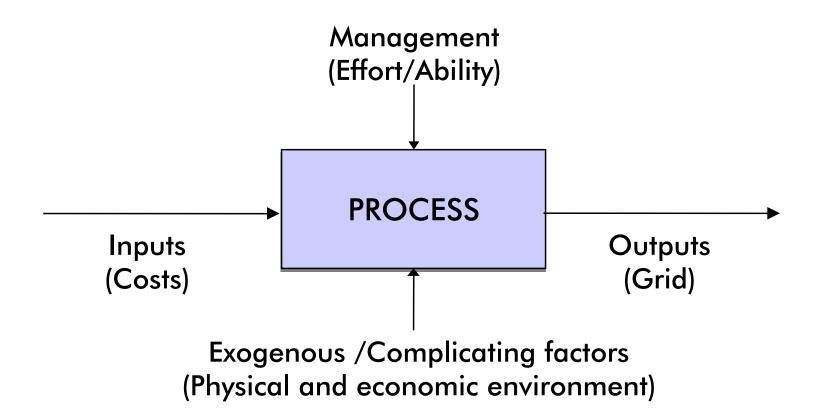
ECOM +

- Doing some things right
- Avoid unnecessary costs in investment and maintenance
- Ignore several synergies / interactions with other costs and benefits

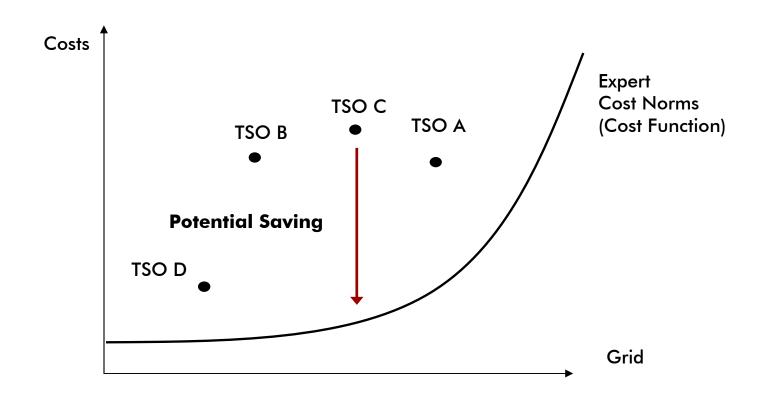
The ECOM+ Rationale

CEER promotes continuous infrastructure expansion and stable quality provision as key principles (Ten principles of Transmission Regulation, 2003)

ECOM+


- Fully reimburses all investments
- Uses no utilization metrics
- Promotes quality by not penalizing scale

Logic

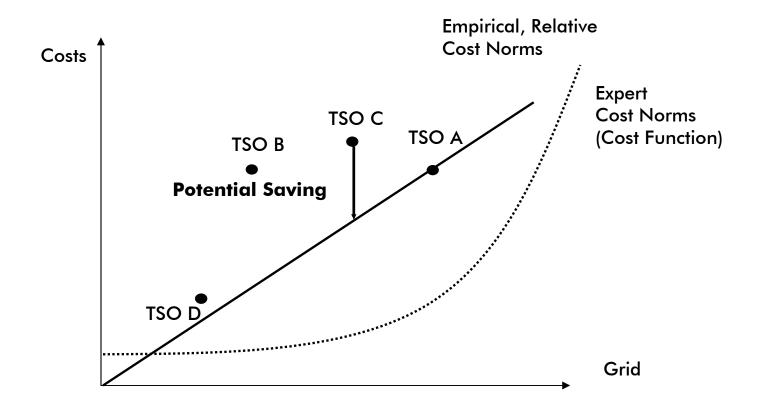


Benchmarking System Model

Ideal Evaluations

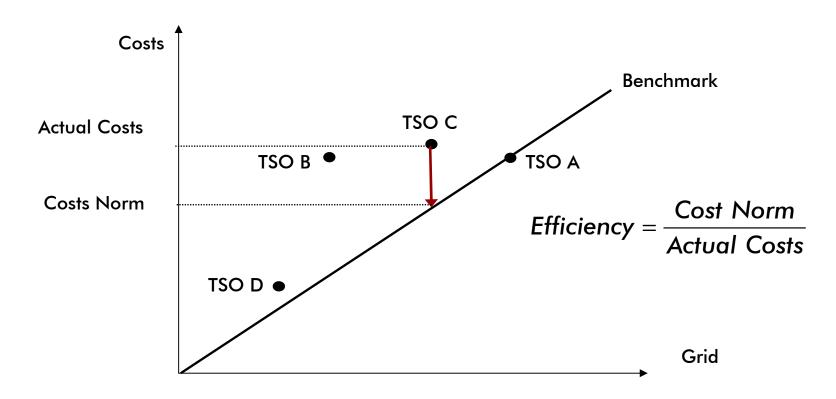
Real Evaluations

Real evaluations complicated by


- Unknown true underlying cost function
- Multiple inputs (=cost types) and outputs (=grid elements
- Different environments

Solutions

- Empirical cost norms /relative performance eval.
- Aggregations
- Corrections plus local negotiations


Relative Norms

ECOM+ presumes no gains from scale - can be relaxed

Efficiency

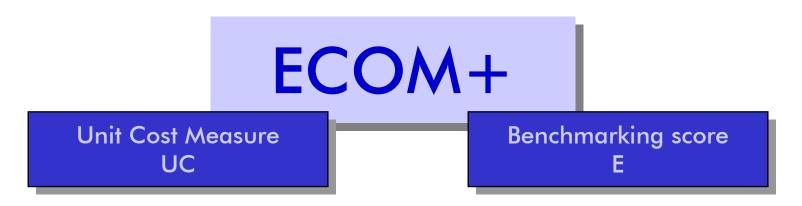
Efficiency = 0.7 suggests: potentially save 30% of present costs

ECOM+ Measures

Unit costs is cost per grid unit

UC= cost / grid size

Benchmark is company with lowest unit costs


Benchmark = min {unit costs}

Efficiency is

E = benchmark / unit cost

ECOM+ is a dual method

How well are we doing in compared to a norm?

How well are we doing relative to the others?

Multiplicity

Inputs (costs)

- O & M costs
- Investment costs
- Timing: 1965,1966,...2002

Outputs (grid)

- Lines and cables
- Circuit ends
- Transformers
- Reactors
- Compensating equipment
- Age and maintenance conditions

Ways ahead

- Partial measures, aggregation, and ignorance

Partial Measures

Partial measures

- O&M costs / km lines
- Labor hours / km 150-220kV land cables
- Capital costs / transformer
- Etc etc

Drawback of partial measures

- Cost allocations will often be arbitrary
- Measures may point in many different directions OK in process benchmarking, not in comprehensive assessment
- Regulators should not micro-manage the TSO

ECOM ++ has some partial measures

- Caution is needed - cf. this afternoon.

Input (Cost) Aggregations

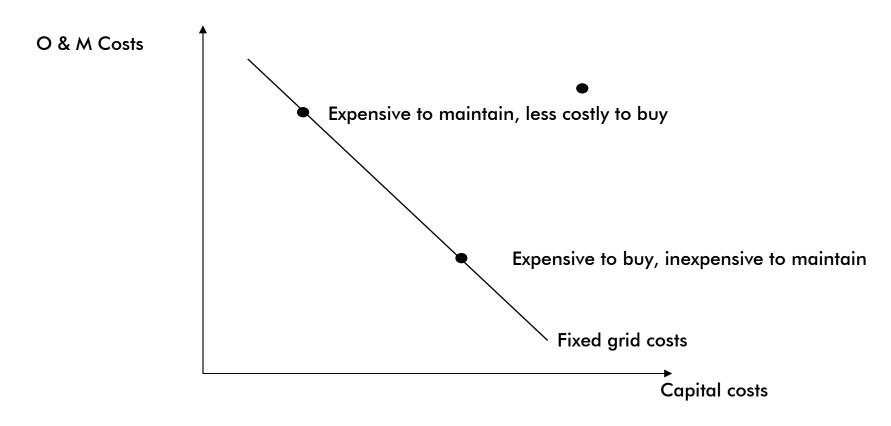
Capital (investment) costs

- Cover interest payment and depreciation
- Depreciation pattern standardized with common interest rate and yearly cost over expected lifetime (30-40 years)

O & M costs

are periodized as reported

Capital and O&M costs can be added


to reflect substitution possibilities

Capital and O&M costs can be evaluated separately

to provide decomposition

Cost Substitution

O & M and capital costs added to capture substitution

Output (Net) Aggregations

Net size (capital cost driver)

- the existing net-parts (lines and cables, circuit ends, transformers, reactors, compensating equipment) are aggregated using (relative) weights
- Two set of weights used

Capital cost weights

Proportional to investment costs (equipment+installation)

O & M weights

Proportional to the cost of O&M

ECOM+ weights

- From technical reports, country reporting etc
- Common in all countries
- Adjusted by country specific asset group weightings

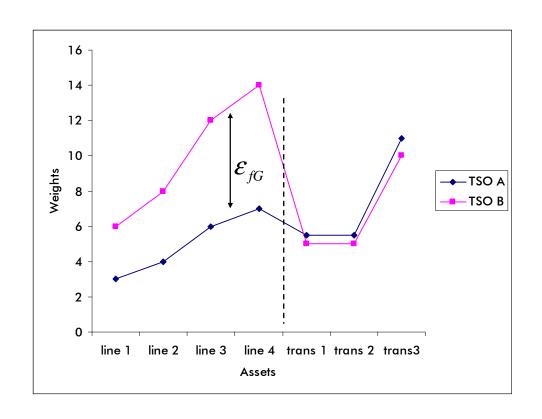
Country Specifics

Country specifics have a

- exogenous
- durable
- sizeable

impact on benchmarked cost (wire company). Primarily

- Mountain Lines (via weights)
- Hilly areas
- Dense area
- Painting


Multiplicative regularity

CapEx

$$\mathbf{v}_{\mathsf{fa}} = \mathbf{v}_{\mathsf{a}} \lambda_{\mathsf{fg}}$$

OpEx

$$\mathbf{w}_{\mathsf{fa}} = \mathbf{w}_{\mathsf{a}} \mu_{\mathsf{fg}}$$

Country Specifics in ECOM+

Table 5.9 Groups and assets used in ECOM+.

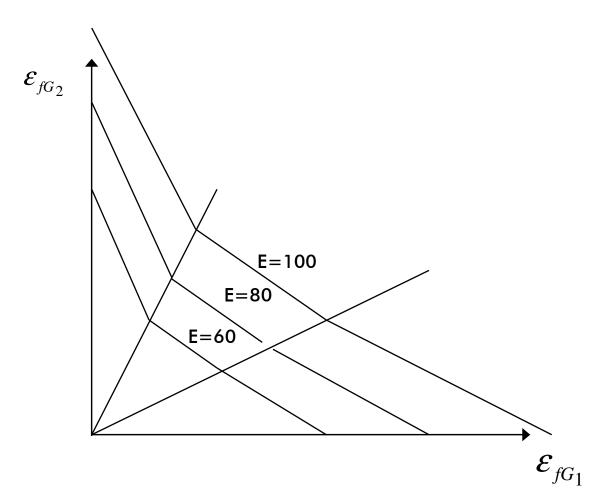
Group g	Comment	Asset no
1	Lines	1 – 9
2	AC cables (sea and land)	10 – 25, 42 – 57
3	DC cables (sea and land)	26 – 41, 58 – 73
4	Transformers	90 – 101
5	Stations and components	102 – 110

Table 6.2 Country specific CAPEX weights ECOM+.

Asset group g	TSO F	TSO E	TSO G	TSO D	
1	1.00	1.00	1.20	1.25	
2	1.00	1.00	1.00	1.00	
3	0.50	0.50	0.50	0.50	
4	1.00	1.00	1.00	1.00	
5	1.00	0.50	1.00	1.00	

Other parameters

Structure


Asset grouping

Parameters

- Currency and inflation correction
- Lifelength equalization
- Foregiveness
- Real interest rate

Sensitivity analysis

ECOM+ Structure

UnitCost
$$U_{ff}(w, v) = \frac{C_{ff} + \sum_{s=t_0}^{t} \varphi_s \underline{I}_{fs} \alpha(r, \underline{T}_f)}{\sum_{\alpha} N_{f\alpha} w_{f\alpha} + \sum_{s=t_0}^{t} \sum_{\alpha} \varphi_s n_{f\alpha s} v_{f\alpha} \alpha(r, \underline{T}_g)}$$
Standard OPEX Standard CAPEX

Data from TSOs

Input and Output Elements

O & M costs

- 2000-2002
- Total plus disaggregated to enhance consistency

Construction cost

- Yearly
- Total or componentwise

Assets register

- Approx 110 asset types
- Installation time

Consistency

- Cost drivers and cost elements must correspond
- E.g. if HVDC equipment in assets base, corresponding costs are needed

Accounting Principles

Guidelines on included costs elements

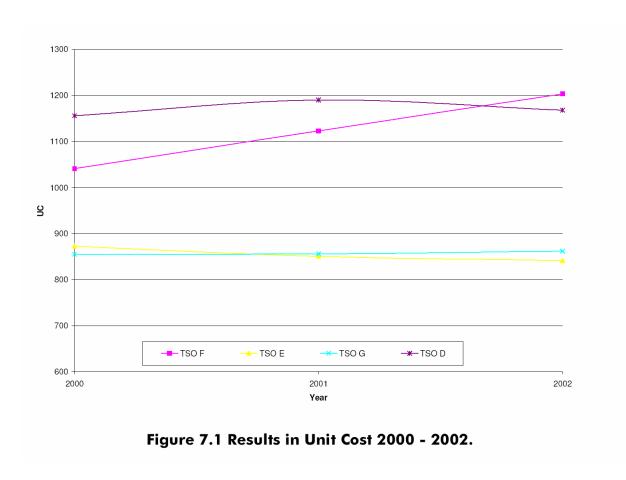
- Purchase of goods
- Employers contributions
- Outsourced services
- Losses on accounts receivables
- Overhead costs
- R&D costs

and how to handle

 Construction interest, investment duty, telecommunication, ground rent, property tax, pension costs, insurance

Other data

Suggestive


- OpEx weights
- CapEx weights
- Country specifics
- Special events

Results

Results UC

Results E

Table 7.2 Efficiency results 2000-2002.

	TSO F	TSO E	TSO G	TSO D
2000	82%	98%	100%	74%
2001	76%	100%	99%	71%
2002	70%	100%	98%	72%

SA TSO E

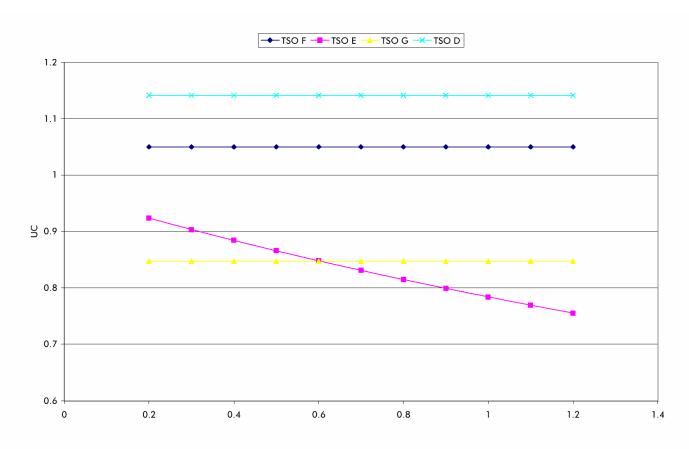


Figure 7.5 UC as a function of $\lambda_{\scriptscriptstyle{\mathsf{TSO}\;\mathsf{E}}}$ (specific asset).

SA Lifelength of lines

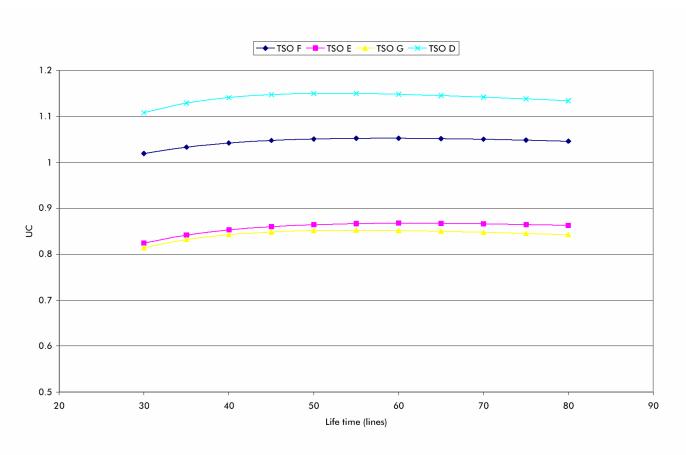


Figure 8.4 UC as a function of life time (lines).

Extensions

Uses

Learning

- Regulators learned about TSOs
- TSOs learned about themselves and others

Regulation

- ECOM+ used to guide regulatory decisions
- Combined with regulatory discretion and negotiation

Other uses

- Indication of managerial competencies (and hereby revenue generation capability)
- Allocation of costs among TSOs and users

Next Steps

ECOM + gives useful experience and background BUT still room for improvements: ECOM+2

Increased reliability

- More data points
- More work on price index, weights, and country specifics
- More site visits
- More usage of technical assessments and tech-econ audits
- Better asset and accounting guidelines

Increased relevance

- More decompositions to identify sources of efficiency
- More dynamics to see improvements and reduce reliance on distant past

Future steps

TSO Activity	TSO Costs	Efficiency Indices	Scores
Future (Long term ideal)	Long run transmission costs	C & B Matching Costs LR Transmission Costs	92/92 = 1.00
Market Facilitation	Cost and Benefit matching costs	Bid Matching Costs C & B Matching Costs	80/92 = 0.87
Systems Operation	Bid matching costs	Capacity Costs Bid Matching Costs	76/80 = 0.95
Planning	Capacity Costs	Corridor Costs Capacity Costs	80/76 = 1.05
	Corridor Costs	Equipment Costs Corridor Costs	83/80 = 1.04
Construction and Maintenance	Equipment costs	Financial Costs Equipment Costs	101/83 = 1.22
Financing	Financial costs	Actual Costs Financial costs	110/101 = 1.09
Present	Act.Constr. & Maint. Costs	PRODUCT= Actual Costs LR Transmission Costs	PRODUCT = 110/92 = 1.19

www.sumicsid.com